1 Introduction

The objective of this lab is to introduce more complicated signals that are related to the basic sinusoid. These signals, which implement frequency modulation (FM) and amplitude modulation (AM), are widely used in communication systems such as radio and television, but they also can be used to create interesting sounds that mimic musical instruments. There are a number of demonstrations on the CD-ROM that provide examples of these signals for many different conditions.

2 Pre-Lab

We have spent a lot of time learning about the properties of sinusoidal waveforms of the form:

\[
x(t) = A \cos(2\pi f_0 t + \phi) = \Re\{A e^{j\phi} e^{2\pi f_0 t}\}
\]

(1)

In this lab, we will extend our treatment of sinusoidal waveforms to more complicated signals composed of sums of sinusoidal signals, or sinusoids with changing frequency.

2.1 Amplitude Modulation

If we add several sinusoids, each with a different frequency \(f_k \) we can express the result as:

\[
x(t) = \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \phi_k) = \Re\left\{ \sum_{k=1}^{N} (A_k e^{j\phi_k}) e^{j2\pi f_k t} \right\}
\]

(2)

where \(A_k e^{j\phi_k} \) is the complex amplitude of the \(k^{th} \) complex exponential term. The choice of \(f_k \) will determine the nature of the signal—for amplitude modulation or beat signals we pick two or three frequencies very close together. See Chapter 3 for a more detailed discussion of beat signals.
2.2 Frequency Modulated Signals

We will also look at signals in which the frequency varies as a function of time. In the constant-frequency sinusoid (1) the argument of the cosine is also the exponent of the complex exponential, so the angle of this signal is the exponent \(2\pi f_0 t + \phi\). This angle function changes linearly versus time, and its time derivative is \(2\pi f_0\) which equals the constant frequency of the cosine in rad/sec.

A generalization is available if we adopt the following notation for the class of signals represented by a cosine function with a time-varying angle:

\[
x(t) = A \cos(\psi(t)) = \Re\{Ae^{j\psi(t)}\}
\]

(3)

The time derivative of the angle from (3) gives a frequency in rad/sec

\[
\omega_i(t) = \frac{d}{dt}\psi(t) \quad \text{(rad/sec)}
\]

but we prefer units of hertz, so we divide by \(2\pi\) to define the instantaneous frequency:

\[
f_i(t) = \frac{1}{2\pi} \frac{d}{dt}\psi(t) \quad \text{(Hz)}
\]

(4)

2.3 Chirp, or Linearly Swept Frequency

A chirp signal is a sinusoid whose frequency changes linearly from a starting value to an ending one. The formula for such a signal can be defined by creating a complex exponential signal with quadratic angle by defining \(\psi(t)\) in (3) as

\[
\psi(t) = 2\pi\mu t^2 + 2\pi f_0 t + \phi
\]

The derivative of \(\psi(t)\) yields an instantaneous frequency (4) that changes linearly versus time.

\[
f_i(t) = 2\mu t + f_0
\]

The slope of \(f_i(t)\) is equal to \(2\mu\) and its intercept is equal to \(f_0\). If the signal starts at time \(t = 0\) secs., then \(f_0\) is also the starting frequency. The frequency variation produced by such a time-varying angle is called frequency modulation. This kind of signal is an example of an frequency modulated (FM) signal. More generally, we often consider them to be part of a larger class called angle modulation signals. Finally, since the linear variation of the frequency can produce an audible sound similar to a siren or a chirp, the linear-FM signals are also called “chirps.”

2.4 MATLAB Synthesis of Chirp Signals

The following MATLAB code will synthesize a chirp:

```matlab
fsamp = 11025;
dt = 1/fsamp;
dur = 1.8;
tt = 0 : dt : dur;
psi = 2*pi*(100 + 200*tt + 500*tt.*tt);
xx = real( 7.7*exp(j*psi) );
soundsc( xx, fsamp );
```

(a) Determine the total duration of the synthesized signal in seconds, and also the length of the \(tt\) vector (number of samples).
(b) In MATLAB, signals can only be synthesized by evaluating the signal’s defining formula at discrete instants of time. These are called samples of the signal. For the chirp we do the following:

\[x(t_n) = A \cos(2\pi \mu t_n^2 + 2\pi f_0 t_n + \phi) \]

where \(t_n = nT_s \) represents discrete time instants. In the MATLAB code above, what is the value for \(t_n \)? What are the values of \(A, \mu, f_0, \) and \(\phi \)?

(c) Determine the range of frequencies (in hertz) that will be synthesized by the MATLAB script above. Make a sketch by hand of the instantaneous frequency versus time. What are the minimum and maximum frequencies that will be heard?

(d) Listen to the signal to determine whether the signal’s frequency content is increasing or decreasing (use soundsc()). Notice that soundsc() needs to know the sampling rate at which the signal samples were created. For more information do help sound and help sound().

3 Warm-up

The instructor verification sheet may be found at the end of this lab. The “Beat Control GUI” is part of the DSP First toolbox.

3.1 Beat Control GUI

To assist you in your experiments with beat notes and AM signals, the tool called beatcon has been created. This user interface controller will exhibit the basic signal shapes for beat signals and play the signals. A small control panel will appear on the screen with buttons and sliders that vary the different parameters for the beat signals. It can also call a user-written function called beat.m. Experiment with the beatcon control panel and use it to produce a beat signal with two frequency components at 850 Hz and 870 Hz. Demonstrate the plot and sound to your TA.

3.2 Function for a Chirp

Use the code provided in the warm-up as a starting point in order to write a MATLAB function that will synthesize a “chirp” signal according to the following comments:

```matlab
function [xx,tt] = mychirp( f1, f2, dur, fsamp )
%MYCHIRP generate a linear-FM chirp signal
% usage: xx = mychirp( f1, f2, dur, fsamp )
% f1 = starting frequency
% f2 = ending frequency
% dur = total time duration
% fsamp = sampling frequency (OPTIONAL: default is 11025)
% xx = (vector of) samples of the chirp signal
% tt = vector of time instants for t=0 to t=dur

if(nargin < 4) %-- Allow optional input argument
    fsamp = 11025;
end

As a test case, generate a chirp sound whose frequency starts at 2500 Hz and ends at 500 Hz; its duration should be 1.5 sec. Listen to the chirp using the soundsc function. Include a listing of the mychirp.m function that you wrote.

3.3 Advanced Topic: Spectrograms

It is often useful to think of signals in terms of their spectra. A signal’s spectrum is a representation of the frequencies present in the signal. For a constant frequency sinusoid as in (1) the spectrum consists of two components, one at $2\pi f_0$, the other at $-2\pi f_0$. For more complicated signals, the spectrum may be very interesting and, in the case of FM, the spectrum is considered to be time-varying. One way to represent the time-varying spectrum of a signal is the *spectrogram* (see Chapter 3 in the text). A spectrogram is found by estimating the frequency content in short sections of the signal. The magnitude of the spectrum over individual sections is plotted as intensity or color on a two-dimensional plot versus frequency and time.

In order to see what the spectrogram produces, run the following code:

```matlab
fs=8000; xx = cos(3000*pi*(0:1/fs:0.5)); specgram(xx,1024,fs); colorbar
```

or, if you are using plotspec:

```matlab
fs=8000; xx = cos(3000*pi*(0:1/fs:0.5)); plotspec(xx,fs,1024); colorbar
```

Notice that the spectrogram image contains one horizontal line at the correct frequency of the sinusoid.

---

1If the second argument is made equal to the “empty matrix” then its default value of 256 is used.

2Usually the window length is chosen to be a power of two, because a special algorithm called the FFT is used in the computation. The fastest FFT programs are those where the signal length is a power of 2.
4 Lab Exercise: Chirps and Beats

For the lab exercise and lab report, you will synthesize some AM and FM signals. In order to verify that they have the correct frequency content, you will use the spectrogram. Your lab report should discuss the connection between the “time-domain” definition of the signal and its “frequency-domain” content.

4.1 Beat Notes

In the section on beat notes in Chapter 3 of the text, we analyzed the situation in which we had two sinusoidal signals of slightly different frequencies; i.e.,

\[ x(t) = A \cos(2\pi(f_c - f_\Delta)t) + B \cos(2\pi(f_c + f_\Delta)t) \] (5)

In this part, we will compute samples of such a signal and listen to the result.

(a) Write an M-file called `beat.m` that implements (5) and has the following as its first lines:

```matlab
function [xx, tt] = beat(A, B, fc, delf, fsamp, dur)
%BEAT compute samples of the sum of two cosine waves
% usage:
% [xx, tt] = beat(A, B, fc, delf, fsamp, dur)
% % A = amplitude of lower frequency cosine
% % B = amplitude of higher frequency cosine
% % fc = center frequency
% % delf = frequency difference
% % fsamp = sampling rate
% % dur = total time duration in seconds
% % xx = output vector of samples
% --Second Output:
% tt = time vector corresponding to xx
```

Include a copy of your M-file in your lab report. You might want to call the `syn_sin()` function written in Lab 2 to do the calculation. The function should also generate its own time vector, because that vector can be used to define the horizontal axis when plotting.

(b) To assist you in your experiments with beat notes, a tool called `beatcon` has been created. This user interface controller is able to call your function `beat.m`, if you check the box `Use External beat()` in the lower left-hand corner of the GUI. Therefore, before you invoke `beatcon` you should be sure your M-file is free of errors. Also, make sure that your `beat.m` function is on the MATLAB path.

Test the M-file written in part (a) via `beatcon` by using the values `A=10`, `B=10`, `fc=1000`, `delf=10`, `fsamp=11025`, and `dur=1` secs. Plot the first 0.2 seconds of the resulting signal. Describe the waveform and explain its properties. Hand in a copy of your plot with measurements of the period of the “envelope” and period of the high frequency signal underneath the envelope.

(c) (Optional) Experiment with different values of the frequency difference \( f_\Delta \). Listen to the sounds (there is a button on `beatcon` that will do this for you automatically) and think about the relationship between the sound and waveform.

---

3“Optional” means that you do not have to include this in your lab report.
4.2 More on Spectrograms

Beat notes provide an interesting way to investigate the time-frequency characteristics of spectrograms. Although some of the mathematical details are beyond the reach of this course, it is not difficult to appreciate the following issue: There is a fundamental trade-off between knowing which frequencies are present in a signal (or its spectrum) and knowing how those frequencies vary with time. As mentioned previously in Section 3.3, a spectrogram estimates the frequency content over short sections of the signal. If we make the section length very short we can track rapid changes in the frequency. However, shorter sections lack the ability to do accurate frequency measurement because the amount of input data is limited. On the other hand, long sections can give excellent frequency measurements, but fail to track frequency changes well. For example, if a signal is the sum of two sinusoids whose frequencies are nearly the same, a long section length is needed to “resolve” the two sinusoidal components. This trade-off between the section length (in time) and frequency resolution is equivalent to Heisenburg’s Uncertainty Principle in physics.

When $A = B$ in (5), the beat signal can be expressed as

$$x(t) = A \cos(2\pi(f_c - f_\Delta)t) + A \cos(2\pi(f_c + f_\Delta)t) = A[\cos(2\pi f_\Delta t)] \cos(2\pi f_c t)$$

Therefore, a beat note signal may be viewed as two signals with different constant frequencies, or as a single frequency signal whose amplitude varies with time. Both views will be useful in evaluating the effect of window length when finding the spectrogram of a beat signal.

(a) Create and plot a beat signal with

(i) $f_\Delta = 32$ Hz
(ii) $T_{\text{dur}} = 0.26$ sec
(iii) $f_s = 11025$ Hz
(iv) $f_c = 2000$ Hz

(b) Find the spectrogram using a window length of 2048 using the commands:

```plaintext```
specgram(x,2048,fsamp); colormap(1-gray(256)).
```

Comment on what you see. Are the correct frequencies present in the spectrogram? If necessary, use the zoom tool to examine the important region of the spectrogram.

(c) Find the spectrogram using a window length of 16 using the commands:

```plaintext```
specgram(x,16,fsamp); colormap(1-gray(256)).
```

Comment on what you see, and compare to the previous spectrogram.

4.3 Spectrogram of a Chirp

Use the `mychirp` function (written during the Warm-up) to synthesize a chirp signal for your lab report. Use the following parameters:

1. A total time duration of 3 secs. with a D/A conversion rate of $f_s = 11025$ Hz.
2. The instantaneous frequency starts at 5,000 Hz and ends at 300 Hz.

Listen to the signal. What comments can you make regarding the sound of the chirp (e.g., is the frequency movement linear)? Does it chirp down, or chirp up?

Create a spectrogram of this chirp signal, and use it to verify that you have the correct instantaneous frequencies.
4.4 A Chirp Puzzle

Synthesize a second “chirp” signal (for your lab report) with the following parameters:

1. A total time duration of 3 secs. with a sampling rate of $f_s = 11025$ Hz.

2. The instantaneous frequency starts at 3,000 Hz and ends at $-2,000$ Hz (negative frequency).

Listen to the signal. Does it chirp down, or chirp up, or both?

Create a spectrogram of this second chirp signal.

Use the theory of the spectrum (with its positive and negative frequency components) to help explain what you hear and what you see in the spectrogram. In other words, the changing instantaneous frequency implies that the frequency components in the spectrum are moving.
Lab 03
INSTRUCTOR VERIFICATION SHEET

For each verification, be prepared to explain your answer and respond to other related questions that the lab TA’s or professors might ask. Turn this page in at the end of your lab period.

Name: ___________________________ Date of Lab: _________

Part 3.1 Demonstrate usage of the Beat Control GUI.

Verified:______________ Date/Time:__________

Part 3.2 Demonstrate the mychirp.m function. In the space below write how you would call the function with a correct set of arguments.

Verified:______________ Date/Time:__________